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Abstract 
The study focused on secernating the Basement Complex with particular interest on characterizing the soils 

Northeastern Nigeria in order to examine their genesis. Previous studies focused on soils developed on the 

Basement Complex as a unit. The present study therefore emphasizes the study of soils over specific 

lithologies such as Porphyritic granite (PG), granite-gneiss (GG) and pegmatite (PM. Three profile pits 

were dug in soils overlying each lithology, resulting in a total of nine soil profile pits. Soil samples were 

collected from genetic horizons and used for the study. Morphological, physical and chemical properties of 

the soils were examined and analyzed (using R packages) to understand their pedogenic differences. A B and 

C horizons dominated the soils with pedal depths of greater than 100 cm. Bioturbation was evident in the 

surface soils and increased lessivationin the B horizons. Clay varied strongly with silt (Pr (>F) 0.003815**) 

and exchangeable acidity (Pr (>F) 0.01124*) in the soils formed over GG and correlated positively with the 

silt (r = 0.85***) and exchangeable acidity (r = 0.81***). Observed averages of pH were 6.6, 6.8 and 6.4 

for PG, GG and PM, respectively accounting for neutral and slightly acidic soil reactions. Computed means 

of most soil properties between lithological units were statistically indifferent that the soils are generally 

similar pedogenically. 
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Introduction 
 

Basement complex, granite gneiss, 

pedogenesis, pegmatite, porphyritic granite 

organisms, topography and time) which give 

rise to distinct soil types observed on a 

landscape (Ojanuga et al., 2003; Esu et al., 

2008; Amhakhian and Achimugu, 2011). 

 

Land evaluation (soil survey interpretation) 

precedes land use planning as the soil resource 

data provide several information, which may 

facilitate in predicting soils’ behaviour towards 

different land uses viz. crop cultivation, 

plantation, forest or other usage (Prasad, 2000).  

However, utility of the generated data can be 

significantly enhanced if the taxonomic units 

are grouped into management units, which can 

indicate the potential and constraints of an area 

in terms of its fertility (Akinbola et al., 2009).  

 

Fertility capability classification (FCC) system 

(a system of land evaluation) has been 

described as a technical soil classification 

system that focuses quantitatively on the 

physical and chemical properties of the soil 

that are important towards soil fertility 

management (Sanchez et al., 1982). It is 
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primarily developed for interpreting soil 

taxonomy and additional soil attributes in a 

way that is directly relevant to plant growth 

(Sanchez et al., 2003). Pedological information 

are very important for general land use 

planning however, the interest of the farmer 

lies in the interpretation of the soil surveys, 

otherwise known as land evaluation (Udoh et 

al., 2013; Fasina and Adeyanju, 2006). 

Fertility capability classification identifies the 

most limiting land qualities and provides a 

good basis for advising farmers on the 

appropriate management practice for optimum 

production in an area. FCC also simplifies 

information about the profile and analysis of 

soils for the benefit of those who are not 

familiar with soil classification system. It 

appears to be a suitable framework for 

agronomic soil taxonomy, which is acceptable 

to both pedologists and agronomists (Udoh et 

al., 2013). 

 

Little information is currently available to 

farmers and extension workers with regard to 

soil fertility management in an agrarian 

community of Umuahia area of Abia State. In 

this respect, the research work was carried out 

to characterize and assess the fertility 

potentials of soils under selected land use types 

for sustainable production of different crops. 

Materials and methods 

Location, geology and climate of the study 

area 

The study was conducted in Bakindutse, 

Mallum and Kona areas of Taraba State (6°30′ 

& 9°30′ N; 9°00′ & 12°00′ E), northeastern 

Nigeria. The geology of the study area is that 

of an undifferentiated Basement Complex. 

However, Precambrian granitic and migmatite 

gneisses with outcrops of the rocks occur at 

intervals (Ogezi, 2002). The study area is 

characterized by a tropical climate with distinct 

wet and dry seasons. The wet and dry seasons 

last for 7 and 5 months, respectively. 

Precipitation is lowest in January with an 

average of 0 mm, while in August, the most 

precipitation falls with an average of 217 mm 

(Fig. 1). Mean annual temperature is 34 
o
C and 

varies in mean monthly values between 28.4 

o
C in the coolest month of December and 37 

o
C 

in the hottest month of March (Fig. 1). Taraba 

State is characterized by three dominant 

vegetational zones. The guinea savannah is 

found in the southern part of the state and 

identified by forest and tall grasses, while the 

Sub Sudan vegetation is characterized by short 

grasses with a few short trees. The Mambilla 

Plateau area is uniquely marked by a semi-

temperate climate with luxuriant pasture and 

short trees. 
 

Field and laboratory studies 

The sites for the study were identified through 

reconnaissance visits using the geological map 

of Taraba State obtained from the Nigerian 

Geological Survey Agency. Porphyritic granite 
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(08
o
 50´32 14.6 N and 011

o 
17´43.0 E; 247 m), 

granite gneiss (08
o
59’10.5 N and 011

o
19’14.33 

E; 268 m) and pegmatite (08
o
50’14.6’’N and 

011
o 

17 ’43.0’’E; 247 m) were identified and 

selected amongst other lithological units 

because of their vast expanse and agricultural 

value. Three soil profile pits were located on 

the crests of each of the three lithologies. In all, 

nine soil profile pits were dug and used for the 

study, such that: BDCP1+BDCP2+BDCP3 = 

PG, MCP1+MCP2+MCP3 = GG and 

KCP1+KCP2+KCP3 = PM. The pedons were 

described following the procedures in the 

guidelines for soil profile description as 

outlined by FAO (2006). Soil samples were 

collected bottom-top from identified pedogenic 

horizons. Standard cylindrical cores were used 

in the collection of soil samples meant for bulk 

density determination. Soil samples meant for 

physical and chemical analyses were air-dried 

and sieved with a 2 mm mesh of a sieve. The 

fine earth fraction (< 2 mm) was used for 

laboratory analyses, while the coarse fraction 

was discarded. 

Bulk density was determined by the 

undisturbed core method (Blake and Hartge 

1986), while aggregate stability was 

determined by the method described by Masri 

and Ryan (2006).Particle size distribution was 

determined by the Bouyoucos hydrometer 

method (Gee and Bauder, 1986), while soil pH 

was determined in H2O and KCl in 1:2.5 soil to 

solution ratio (Udo et al., 2009). Organic 

carbon was determined by the Walkley-Black 

method modified by Udo et al., (2009).  The 

cation exchange capacity (CEC) was 

determined by the neutral (pH 7.0) NH4OAc 

saturation method (Udo et al., 2009) and 

exchangeable Ca, Mg, K and Na were 

determined by the neutral NH4OAc 

displacement method and read through by 

Atomic Absorption spectrophotometer (Udo et 

al., 2009). Exchangeable acidity was 

determined by using BaCl2-triethanolamine 

(TEA) solution buffered at pH 8.2 by back 

titration procedures of Udo et al., (2009). Base 

saturation was calculated by expressing the 

sum of exchangeable bases as a percentage of 

the CEC at pH 7 

 

Statistical analysis 

The data generated were analyzed for 

correlation using R version 4.2.0. 

 

Results and discussion  

Data generated from the studied soils are 

presented in Table 1. All the pedons exhibited 

distinction in thickness of horizons between 

the overlying and underlying horizons. A, B 

and C master horizons dominated the soils. 

This indicates that the soils are mature. 

Similarly, pedal depths greater than100 cm for 

the soils (Table 1 and Fig. 2) are indicative of 

deep soils which were further evidence that the 

soils are not only mature but well developed. 
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Thin surface soil horizons observed in BDCP3, 

KCP1 and MCP1&2 was attributed to land use 

as continuous cultivation is a common practice 

of the farmers in the study area. Bioturbation 

was evident in the surface soils as the Ap 

horizons were characterized by fine roots and 

ant holes which could have contributed to the 

generally dark colouration (Fig. 2) of the 

surface soils and subsequent increase in 

lessivation at the B horizons.  

The presence of gravels in BDCP1 (Btv, 20 - 

81 cm overlying Bt at 81 - 128 cm) signals 

botched weathering or might be attributed to 

the decomposition of clay and formation of 

sesquioxide concretions between the surface 

and subsurface transition. Pedons BDCP1, 

KCP, KCP3 and MCP2 exhibited illuviation of 

clay implying that the soils have been 

significantly transformed from the Basement 

complex. Weathering of the Basement 

Complex is usually slow because it is mainly 

of igneous and metamorphic origin, as such, 

they are high in silica which is known to be 

highly resistant to weathering. 

The weathering depth as indicated by the soil 

depth presupposes advanced pedogenesis as 

neither water table nor weathered rock was 

observed at 2 m depth. Pedons BDCP3 and 

MCP1 did not show any evidence of clay 

accumulation hence, the soils were relatively 

younger. The C horizons in thestudied soils 

were characterized by ant channels and fine 

roots implying the supply of soil air and water 

to facilitate basal weathering of the Basement 

Complex at extended depth. On the other hand, 

soil colour and horizonation indicate that the 

soils are mostly well-drained and formed in 

situ. Therefore, it can be surmised that 

weathering of the Basement Complex led to 

the observed variance in the soil colour of the 

tints of black to brown to gray to yellow and 

red in the surface soils of BDCP1 (10YR 3/2), 

BDCP3 (10YR3/1), KCP (10YR3/1), MCP2 

(10YR3/2) and MCP3 (5YR4/6)very dark gray 

– dark gray colours suggesting the presence of 

glauconite, while organic matter contributed 

more to the dark soil colour.  

The presence of quartz grains may have 

contributed significantly to the gray colour in 

the surface soils while the impact of humus 

produced the observed dark gray. Contrasting 

soil surface colour matrices were observed in 

KCP3 (2.5YR6/6 - light red) and MCP1 

(10YR2/1 - black) implying the former could 

be dominated by hematite and the later 

humus/todorokite (Shobayo, 2019). In the 

subsurface soils, yellowish/reddish-brown to 

brown, yellowish red to red imply active 

braunification and ferritization processes. 

Clay content increased significantly in the B 

horizons of BDCP1 and KCP2exhibiting 

argilluviation. However, its distribution was 

inconsistent with depth in BDCP1, MCP1, 
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KCP1 and KCP2 implying that clay 

translocation was at play and attributed to the 

alternate wet and dry seasons of the study area. 

The inconsistency also contributed to the 

relatively large variation in the soils’ texture. 

Regular decrease in the clay content with depth 

of BDCP3, MCP2 and MCP3 as well as its 

regular increase in KCP3) was associated with 

lessivation (Imadojemuet al., 2018). The 

implication of the clay distribution pattern and 

the formation of B horizon soil maturity. Such 

distribution may also be attributed to more 

intensive chemical weathering in the 

subsurface soils. On soils formed over 

porphyritic granite (PG), clay also varied 

strongly with silt (Pr (>F) 0.003815) and 

exchangeable acidity (Pr (>F) 0.01124*) in the 

soils formed over granite gneiss lithological 

unit and correlated positively (Fig. 3a&3b) 

with silt (r = 0.85***) and exchangeable 

acidity (r = 0.81***).  

The distribution pattern of silt in most of the 

studied soils was inconsistent with pedal depth 

except in pedons BDCP1, BDCP3 and MCP2 

(Table 1).The values of silt for the studied soils 

were generally lower than those of clay and 

sand at their corresponding horizons implying 

that the transformation process was swift in silt 

during pedogenesis. Soils with high silt content 

have been reported to account for surface 

crusting (Lawal and Lawal, 2017). The silt/clay 

ratio was also used as a measure of soil 

development (Table 1). Pedons BDCP1, 

BDCP2, BDCP3, MCP1, MCP2, MCP3, 

KCP1, KCP2 and KCP3 recorded average silt 

ratio of 0.59, 1.54, 0.69, 0.95, 1.57, 1.00, 0.70, 

0.55 and 0.83 respectively. KCP2 recorded the 

lowest average (0.55) which is greater than the 

critical value of 0.15 on the scale of 

Maniyunda (2012) for highly weathered soils. 

The sand fraction was the highest among the 

fine earth fractions with values ranging from 

221 to 630 g kg
-1

. The dominance of sand in 

the soils reflect the granitic origin of the 

geologic materials (Ya’u and Maniyunda, 

2018). MCP2 recorded the lowest average of 

320 g kg
-1

 while BDCP2 recorded the highest 

average of 417 g kg
-1

. The distribution pattern 

across the pedons was inconsistent with depth 

and coupled with the high content, contributed 

to the loamy sand and sandy loam textures of 

the soils (Table 1). The difference in the 

textural class is indicative of pedogenic sorting 

of fine fractions (clay and silt) and eluviation 

with attendant high precipitation resulting in 

the higher sand content in the surface soils of 

BDCP1, BDCP2, BDCP3, MCP2 and KCP2. 

Conversely, the higher sand content at the 

lowest horizons might have resulted from the 

direct decomposition of the underlying 

bedrock.  

High, higher and highest values were recorded 

for the textural class sandy clay loam, loamy 

sand and sandy loam, respectively. Soils with 
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the highest values in the surface (BDCP2, 

BDCP3 and MCP1) would resist erosion and 

tillage better than those with the highest values 

at the subsurface soils (KCP1, KCP2, KCP3 

and MCP2), which would tolerate the 

shrinking and swelling of the soil particles 

more, thereby slowing down weathering. 

Generally, the soils recorded moderate 

aggregate stability values implying that they 

can hold water moderately to facilitate 

effective pedogenic processes. Lowest average 

was recorded for KCP2 (17.69) and the highest 

average of 36.63 was recorded for 

BDCP2.Therefore, soils of BDCP2 are the 

most stable as against a weak structural 

aggregate that can easily be destroyed 

especially under intensive cultivation. 

Bulk density averages are 1.74, 1.74, 1.62, 

1.64, 1.78, 1.70, 1.68, 1.67 and 1.67 Mgm
-3

 

respectively for Pedons BDCP1, BDCP2, 

BDCP3, MCP1, MCP2, MCP3, KCP1, KCP2 

and KCP3.Soil bulk densityvalues were 

irregularly distributed down the soil profiles of 

BDCP1, BDCP2, MCP2, MCP3, KCP1, 

KCP2, KCP3. Lower bulk density values in the 

surface soils (Table 1) relative to the 

underlying horizons is attributed to higher 

organic matter content in the soil (Odunzeet al. 

(2019). Pedons BDCP3 and MCP1 however, 

increased regularly with depth while MCP2 

decreased regularly with depth. The former 

may be attributed to an increase in clay content 

and decrease in soil organic matter while the 

latter presupposes an opposite trend. High bulk 

density in the surface soils could be attributed 

to crusting or surface sealing due to high silt 

content in cultivated areas (Are et al., 2018). 

Only MCP2 is within the critical limits of 1.75 

- 1.80 Mgm
-3

 for the restriction of roots in 

agricultural soils (FAO, 2006). 

Soil reaction in all the pedons shows lower 

values (falling by at least 0.5 unit) of pH in 

KCl to pH in water at their corresponding 

horizons indicating that pH KCl was more 

acidic. Soil pH varied irregularly with depth in 

all the pedons. Observed averages of pH 

(water) were 6.6, 6.8 and 6.4 for PG, GG and 

PM accounting for neutral and slightly acidic 

soil reaction. However, averages of 5.6, 5.8 

and 5.0 pH (KCl) were recorded for PG 

(moderately acidic), GG (moderately acidic) 

and PM (very strongly acidic) respectively. 

Findings by Odunze et al., (2019) show that 

soil pH conditions required for microbial 

activity range from 5.5 – 8.8. In soils formed 

over porphyritic granite (PG), pH H2O varied 

significantly with pH KCl (Pr (>F) = 0.001673 

**) and exchangeable acidity (Pr (>F) = 

0.001596 **).  

Similarly, pH H2O significantly correlated 

(Fig. 5a&5b) with pH KCl (r = 0.91***) and 

exchangeable acidity (r = -0.91***). 

Meanwhile, increase in pH H2O lead to 

decrease in the soil exchangeable acidity. In 
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soils formed over granite gneiss (GG), pH H2O 

varied significantly with Mg (Pr (>F) = 

0.002685**) and correlated very significantly 

positively (Fig. 3a&3b). This implies that Mg 

ions reduce soil acidity. Soil pH condition 

observed for soils formed over pegmatite 

(PM); showed significant variation in pH 

(H2O) over organic carbon content (Pr (>F) = 

0.01684*, r = -0.80***), soil K (Pr (>F) = 

0.008215**, r = -0.78***Fig. 4a&4b) and soil 

Na (Pr (>F) = 0.0243*, r = -0.73***). 

The soils formed over PG, GG and PM show 

mean values of exchangeable acidity (EA) in 

the surface soils to be 1.53, 1.67 and 1.60 

cmol(+)kg
-1

 respectively, while the subsurface 

soils recorded mean values of 1.34, 1.50 and 

2.12 cmol(+)kg
-1

. The surface and subsurface 

averages indicate that the soils are in medium 

to high levels since values were greater than 1 

cmol (+) kg
-1

 (George, 2009). However, the 

higher mean values observed in the surface 

soils of PG and GG, and subsurface soils of 

PM may be attributed to the loamy nature of 

the soils as it influences the buildup of 

exchangeable acidity through reduced leaching 

of exchangeable aluminium (Al) and hydrogen 

(H) in the solum (George, 2009). 

The exchangeable acidity (EA) of the soils 

were within limits that may pose threat to crop 

production. Based on the moderately to 

strongly acidic soil reaction and medium to a 

high concentration of exchangeable acidity (> 

1 cmol (+) kg
-1

) in these soils, it is 

recommended that incorporation of organic 

materials be adopted. 

Soils over PG showed that organic carbon 

content (OC) was higher at the surface soils of 

BDCP1 (0.38 g kg
-1

), BDCP2 (0.78 g kg
-1

) and 

BDCP3 (1.01 g kg
-1

) when compared to their 

subsurface averages of 0.28, 0.16 and 0.17 g 

kg
-1

, respectively. The distribution showed a 

systematic decrease with pedal depth. Organic 

carbon content was rated very low ( < 10.0 g 

kg
-1

) in the studied soils. The low content was 

attributed to high mineralization rate (Eche et 

al., 2014)and continuous cultivation(Poeplau 

and Don, 2013) in the study areas. The soils 

over PG depicted OC had significant variation 

with soil aggregate stability (Pr (>F) = 

0.04771*, r = 0.74***), bulk density (Pr (>F) = 

0.02125*, r = -0.74***), Ca (Pr (>F) = 

0.01107*, r = 0.76***), soil K (Pr (>F) = 

3.3820***, r = 0.95***) and Na (Pr (>F) = 

6.4470***, r = 0.98***). A proportional 

decrease in the soils’ OC led to a proportional 

increase in BD with pedal depth, with a 

resultant decrease in soil aggregate stability. 

Since clay did not vary significantly with Ca, 

K and Na in the soils, it is therefore concluded 

that OM contributed majorly to the increase of 

the soils’ exchangeable bases. 

Organic C in soils formed over GG shows a 

regular decrease (Table 1) down the studied 
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soil profiles. Sharami et al. (2010) attributed 

low organic carbon content to lower CEC 

values; however, these soils showed a very 

strong negative correlation (Fig. 3a&3b) with 

CEC (r = -0.72***) implying that OC did not 

contribute appreciably to the soils’ CEC. But 

OC contributed more to soils’ K (Pr (>F) = 

2.4010***, r = 0.91***) and Na (Pr (>F) = 

8.004***, r = 0.97***) for the soils formed 

over PM as they show very strong positive 

correlation with OC.  

The dominance of exchangeable Ca over 

exchangeable Mg, K and Na were common in 

the studied soils (Table 2). The distribution 

was irregular with pedal depth assuming the 

distribution of clay content (Table 1) with high 

Ca affinity. However, a general increase in 

exchangeable Ca with an increase in soil depth 

has been reported (John et al., 2018), and was 

attributed to illuvial accumulation caused by 

the leaching of nutrient minerals from the 

surface horizons. Calcium dominance at the 

exchange site was also attributed to the high 

affinity of BasementComplex soils for Ca 

(Fasinaet al., 2015; Raji, 2016). Averages of 

2.67, 2.20 and 1.47 cmol (+) kg
-1

 were 

recorded in the surface soils of PG, GG and 

PM respectively. The values of exchangeable 

Ca were rated medium (2 – 5 cmol(+)kg
-1

) for 

the surface soils of PG and GG but low (< 2 

cmol(+)kg
-1

) for PM. Their subsurface soils 

averages were also lower for PG (1.6 

cmol(+)kg
-1

) and GG (1.8 cmol(+)kg
-1

) but 

medium for PM (2.44 cmol(+)kg
-1

). 

In PG, Ca varied significantly with OC (Pr 

(>F) = 0.011*, r = 0.76***) suggesting supply 

through soil organic matter, and BD (Pr (>F) = 

0.043*, r = -0.60***) implying negative 

association with BD. A strong significant 

relationship, was noted between Ca and Mg, 

exchangeable acidity and base saturation at a 1 

% level of probability in PM. 

Distribution of exchangeable Mg, K and Na 

followed a similar trend as was obtained for Ca 

in their corresponding genetic horizons; 

however, the trend was such that the content of 

Ca > Mg > K > Na. Averages of exchangeable 

Mg (0.87), K (0.08) and Na (0.04cmol(+)kg
-1

) 

in the surface soils of PG 

(BDCP1+BDCP2+BDCP3) against their 

subsurface averages Mg (1.32), K (0.02) and 

Na (0.01cmol(+)kg
-1

) indicate comparatively 

higher Mg content in the subsurface soils. 

Calcium, Mg, K and Na contents in soils 

formed over PG, GG (MCP1+MCP2+MCP3) 

and PM (KCP1+KCP2+KCP3) were 

statistically at par when their means were 

compared and rated medium, high, and low, 

respectively. The low level of K could be 

attributed to low level of mica in Basement 

Complexes (Shobayo, 2019). Garcia (2003) 

submitted that high level of Mg in soil may 

cause deterioration of soil structure, lower 

water intake rates and affects its chemical and 
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biological properties. Low Na could also buffer 

the sodicity problems in the soils and promote 

the balancing of hydrolysable cations. 

The CEC (by ammonium acetate) of the 

studied soils ranged from6 to 12 cmol(+)kg
-1 

(Table 2) across genetic horizons; a range 

considered medium on the scale of Esu ( 

1987). The distribution with depth was 

inconsistent in the lithological units. The 

parent material significantly influenced the 

CEC of the soils as values were generally low 

to moderate and was attributed to their granitic 

origin. Soils formed over PG recorded a range 

of 9.2 – 16.4 cmol(+)kg
-1

 in the surface soils 

and 7.2 – 19.6 cmol(+)kg
-1

 in the subsurface 

soils. The mean average values of 11.87 

(surface) and 12.84 cmol(+)kg
-1

 (subsurface) 

were indications of moderate nutrient retention 

of the soils as corroborated by Sharamiet al., 

2010. Cation exchange capacity showed 

significant variation only with BS (Pr (>F) 

0.0448*) plus a strong negative association 

(Fig. 5a&5b). Similar statistical difference was 

observed for soil formed over GG.  

Similarly, soils formed over GG had CEC 

ranging from 8.8 – 13.6 cmol(+)kg
-1

 in the 

surface soils and 8.0 – 20.8 cmol(+)kg
-1

 in the 

subsurface soils. The surface and subsurface 

soils had 11.2 and 15.3 cmol(+)kg
-1 

respectively as mean values and were rated 

medium to high. The higher CEC average 

recorded in the subsoils could be attributed to 

its relatively high clay content, which could 

have improved the cation retention capacity at 

the exchange site against leaching 

(Olorunfemi, 2016). Cation exchange capacity 

ranges of 9.6 – 10.8 (mean, 10.13 cmol(+)kg
-1

) 

and 6.0 – 28.0 (mean, 13.23 cmol(+)kg
-1

) for 

the surface and subsurface soils, respectively 

were recorded in soils formed over PM. 

However, higher mean values recorded in the 

subsurface soils could be attributed to the 

active argilluviation process whereas the lower 

CEC values (of surface soils) is suggestive of 

low organic matter of Northern Guinea 

Savanah and dominance of sesquioxides and 

kaolinite (1:1) clay minerals. 

Base saturation (BS) values varied irregularly 

with soil depth (Table 2) in pedons BDCP3 

(PG) and MCP2 (GG).Its distribution was 

similar to that of clay, organic matter and 

exchangeable bases. Regular increase with 

pedal depth in BDCP2 and regular decrease 

with soil depth in BDCP1, MCP1 and MCP3 

were observed. Mean BS in the surface soils 

(30.11, 32.61 and 24.60 % respectively for PG, 

GG and PM) over subsurface soils (24.93, 

24.41 and 30.48 % respectively for PG, GG 

and PM) did not vary significantly. The mean 

BS values across all horizons were rated low 

(Udo et al., 2009) as values were less than 50 

% and considered less favourable(FAO,2006). 

Effect of crop type and continuous cropping 

influence may have also contributed to the low 
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BS. Base saturation varied significantly with 

CEC in PG (Pr (>F) 0.0448*) and GG (Pr (>F) 

0.0205*). However, in PM, statistical 

difference was observed only between BS and 

Mg (Pr (>F) 0.0238*) and Ca (Pr (>F) 

0.0016*) with a linear association (Fig. 4a&4b) 

implying that Ca and Mg contributed more to 

the BS of soils formed over porphyritic granite 

lithological unit. 
 

Conclusion  

The research studied the pedogenesis of soils 

formed on the Basement with particular 

interest in characterizing the soils formed over 

three lithological units viz;  porphyritic granite 

(PG), granite-gneiss (GG) and pegmatite (PM). 

From the data generated,active pedogenic 

processes took place within the soils as 

exemplified by horizon boundary distinction 

and topography, major A, B, and C horizons. 

Continuous cultivation in the study areas led to 

the thin surface soils observed in pedons 

BDCP3, KCP1 and MCP1&2. The depth 

analysis classified the soils as mature since soil 

depths were greater than 1m.However, since 

pedons BDCP3 and MCP1 did not show any 

evidence of clay accumulation, they were 

regarded as comparatively younger. The silt - 

clay ratio put the soil individuals from PG, GG 

and PM in the ageing order as: 

KCP<BDCP1<BDCP3<KCP1<KCP3<MCP1

<MCP3<BDCP2<MCP2. The dominance of 

sand content in the soils corroborates their 

generally low fertility status as also reflected in 

their low exchangeable bases, OC, TN, AP, 

CEC and BS. The observed averages of 5.6 

and 5.8 for soil pH (KCl) in PG and GG 

contributed to the soil’ improved fertility status 

over PM that was strongly acidic. Computed 

mean values of parameters of the lithological 

units were similar It is therefore concluded that 

the soils are generally similar pedogenically. 
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Table 1: Soil morpho-physical properties 

Profile Horizon 
Depth 

(cm) 

Clay 

(g kg
-1

) 

Silt 

(g kg
-1

) 
Silt:clay 

Sand 

(g kg
-1

) 
Texture 

Aggr.

Stab. 

(%) 

BD 

(Mgm
-3

) 

BDCP1 Ap 0 – 20 100 90 0.90 390 LS 14.32 1.82 

  Btv1 20 – 81 180 70 0.39 370 SL 33.24 1.53 

  B2 81 – 128 140 70 0.50 370 SL 16.23 1.85 

  BCv 128 –175 120 70 0.58 300 SL 31.87 1.74 

BDCP2 Ap 0 – 35 80 130 1.63 410 SL 42.91 1.54 

  Bv 35 – 106 80 50 0.63 400 LS 35.51 1.85 

  CBv 106 – 173 80 190 2.38 440 SL 31.46 1.84 

BDCP3 Ap 0 – 12 120 70 0.58 370 SL 52.91 1.47 

  CB 12 – 62 80 70 0.88 300 LS 27.45 1.59 

  C 62 – 126 80 50 0.63 350 LS 21.25 1.79 

MCP1 Ap 0 – 12 100 90 0.90 320 LS 53.85 1.61 

  B 12 – 36 80 50 0.63 340 LS 28.13 1.66 

  BC 36 – 200 220 290 1.32 410 SCL 18.55 1.66 

MCP2 Ap 0 – 12 180 210 1.17 420 LS 19.89 1.79 

  B 12 – 38 120 210 1.75 320 LS 25.27 1.78 

  CB 38 – 200 119 215 1.81 221 SCL 25.23 1.77 

MCP3 A 0 – 30 100 50 0.50 320 LS 26.88 1.78 

  B 30 – 80 80 110 1.38 440 LS 37.08 1.61 

  C 80 – 155 80 90 1.13 630 LS 14.97 1.7 

KCP1 Ap 0 – 12 80 70 0.88 300 LS 15.24 1.72 

  AB 12 – 38 120 90 0.75 340 LS 13.85 1.58 

  B 38 – 63 80 30 0.38 270 SCL 31.41 1.69 

  CB 63 – 123 220 250 1.14 610 SL 30.3 1.68 

  C1 123 – 159 80 30 0.38 180 SL 20.13 1.74 

  C2 159 – 176 100 70 0.70 430 SL 38.52 1.65 

KCP2 Ap 0 – 20 120 90 0.75 360 LS 19.76 1.64 

  Bt 20 – 62 220 70 0.32 320 LS 19.76 1.66 

  B1 62 – 126 100 70 0.70 330 LS 14.57 1.51 

  B2 126 – 168 120 70 0.58 330 LS 13.11 1.73 

  CB 168 – 200 220 90 0.41 530 SL 21.24 1.82 

KCP3 Ap 0 – 46 80 70 0.88 360 LS 16.53 1.66 

  B 46 – 97 100 90 0.90 360 SCL 17.24 1.69 

  C 97 – 145 100 70 0.70 360 LS 20.91 1.65 
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Table 2: Soil chemical properties 

Profile Horizon Depth pH OC Ca Mg K Na CEC EA BS 

  cm H2O KCl g kg
-1

 cmol(+)kg
-1

  % 

BDCP1 Ap 0 – 20 6.2 5.6 0.375 1.8 0.6 0.05 0.02 10 1.4 24.7 

 Btv 20 – 81 5.8 4.7 0.375 2.2 1 0.05 0.02 16.8 2 19.46 

 Bt 81 – 128 6.6 5.3 0.375 2 0.8 0.05 0.02 14 1.4 18.28 

 CCv 128 – 175 6.7 5.4 0.075 1.8 0.8 0.005 0.01 15.2 1.2 17.14 

BDCP2 Ap 0 – 35 6.1 5.1 0.781 1.6 1.2 0.09 0.04 9.2 2.2 31.85 

 Btv 35 – 106 6.9 5.7 0.164 1.6 1.8 0.01 0.006 10 1.2 34.16 

 CBtv 106 – 173 7.1 6.1 0.164 0.8 1.8 0.01 0.006 7.2 1.2 36.33 

BDCP3 Ap 0 – 12 6.9 6.2 1.013 4.6 0.8 0.09 0.05 16.4 1 33.78 

 CB 12 – 62 6.5 5.3 0.263 2 1.4 0.01 0.008 19.6 1.4 17.44 

 C 62 – 126 6.9 6.2 0.075 1.2 1.2 0.005 0.001 9.6 1.2 25.06 

MCP1 Ap 0 – 12 6.7 5.9 1.676 2.6 1 0.09 0.05 11.2 1.6 33.39 

 B 12 – 36 6.4 5.5 0.479 1.8 0.6 0.05 0.02 14 1.4 17.64 

 C 36 – 200 6.6 5.7 0.439 2.4 1 0.05 0.02 20.8 2.2 16.68 

MCP2 Ap 0 – 12 6.7 5.6 0.838 1.2 1 0.104 0.06 13.6 2.2 17.38 

 Bt 12 – 38 6.7 5.5 0.798 2 0.4 0.101 0.06 8 2 32.01 

 C 38 – 200 6.5 5.4 0.082 2.2 1.2 0.09 0.05 17.6 1 22.03 

MCP3 A 0 – 30 7.1 6.3 1.058 2.8 1.2 0.09 0.05 8.8 1.2 47.05 

 B 30 – 80 7.5 6.1 0.326 1.2 3.6 0.05 0.02 12.4 1.2 39.27 

 C 80 – 155 7.4 6.3 0.285 1.2 2.4 0.011 0.008 19.2 1.2 18.85 

KCP1 Ap 0 – 12 6.6 5.4 1.439 1.6 1.4 0.09 0.05 10.8 1.8 29.07 

 AB 12 – 38 6.3 4.8 0.37 0.8 1.2 0.05 0.02 9.2 1 22.5 

 Bt 38 – 63 6.3 4.6 0.37 2 1 0.05 0.02 12.4 2.2 24.76 

 CB 63 – 123 6.4 4.1 0.247 1.6 0.4 0.009 0.007 8 2 25.2 

 C 123 – 159 7.3 6.6 0.123 1 1.6 0.01 0.008 8 1.8 32.73 

  159 – 176 7.2 6.2 0.041 1 0.8 0.009 0.008 6.4 1 27.12 

KCP2 Ap 0 – 20 5.4 4.1 1.726 1.2 1 0.103 0.06 9.6 1.8 24.61 

 Bt1 20 – 62 5.9 4.1 1.069 2.4 1.4 0.09 0.05 28 1.6 14.07 

 Bt2 62 – 126 6.4 4.4 0.411 2.2 2.4 0.05 0.02 16 1.8 29.19 

 BC 126 – 168 6.6 5.1 0.164 1.2 1.8 0.009 0.007 9.6 0.8 31.42 

 C 168 – 200 6.6 5 0.123 1.2 0.8 0.009 0.005 6 1.6 33.57 

KCP3 Ap 0 – 46 6.5 5.6 0.244 1.6 0.4 0.009 0.004 10 1.2 20.13 

 Bt 46 – 97 5.8 4.3 0.529 7.4 2.6 0.06 0.02 16.8 3.6 60 

 C 97 – 145 6.3 5.1 0.081 1.2 1.2 0.005 0.001 15.2 3 15.83 
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Fig. 1 Climatic data of the study area (Source: Taraba State Water Board,2018)  

 

 
 
Fig. 2 Depth function of soil colour matrices of the study areas 
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Fig. 3a Correlogram of granite gneiss (GG) chemical and 

physical properties 

Fig. 3b Correlogram of granite gneiss (GG) chemical and 

physical properties 

 
 

Fig. 4a  Correlogram of pegmatite (PM) physical and chemical 

properties 

Fig. 4b  Correlogram of pegmatite (PM) physical and 

chemical properties 

  

Fig. 5a   Correlogram of porphyritic granite (PG) physical and 

chemical properties 

Fig. 5b  Correlogram of porphyritic granite (PG) 

physical and chemical properties 


