Forest biomass and carbon content of rubber-tree plantations in iyanomo rainforest ecosystem, nigeria
Main Article Content
Abstract
Deforestation leads to loss of carbon stocks from terrestrial ecosystems and emission of CO2 into the atmosphere, contributing significantly to the climate change problem. Afforestation has been advocated to augment the tree-deficit situation on the earth; but plantations of tree species that will provide both socio-economic and environmental benefits should be considered. This study, to determine whether rubber-tree plantations can provide carbon sinks for mitigating climate change, was conducted at Iyanomo where rubber-tree stands of different age levels and a reference natural forest stand were used as experimental treatments. From each of the rubber-tree stand, 1ha was marked out and sub-divided into 25 temporary plots (20 x 20 m2 quadrants), after which 4 permanent sampling plots were randomly selected. Also, from the reference natural forest, 1 ha marked out was sub-divided into 10 temporary plots (50 x 20 m2 quadrants) from which 4 permanent sampling plots were randomly selected to collect data including diameter at breast height (DBH) and total heights of trees. Soil samples from the natural forest and rubber-tree plantations were tested for organic carbon content, bulk density and particle size distribution. Results: organic carbon contents of soils under the rubber-tree plantations and the natural forest were not significantly different in the study area (P > 0.05). Total biomass carbon stock (214.2 Mg/ha) for rubber-tree plantation aged 25 years was comparable with that of the reference natural forest (212.7 Mg/ha). Conclusion: rubber-tree plantations, if well-managed on long rotation periods, can provide significant carbon sinks for mitigating climate change.
Downloads
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
AGDISER – Australian Government Department of Industry, Science, Energy and Resources (2018).
Supplement to the carbon credits (carbon farming initiative – measurement of soil carbon sequestration in agricultural systems) methodology determination.
.
Aghimien, E. V. (2019).
Aboveground carbon stock estimation using Pleiades satellite imagery of the secondary forest ecosystem in Ibadan, Nigeria. Forestry Research and Engineering Journal, 3(2), 46-54.
Andrew, S. S., Karlen, D. L. & Mitchel, J. P. (2002).
A Comparison of Soil Quality Indexing Methods for Vegetable Production System in Northern California. Agric Ecosyst Eviron.; 90 (1),25-45.
Anitha, k. Joseph, S. Chandran, R. J.; Ramasamy, E. V. & Prasad, S. N. (2010).
Tree species diversity and community composition in a human-dominated tropical forest of Western Ghats biodiversity hotspot, India. Journal of Ecological Complexity, 7(2), 217-124
http://doi.org/10..1016/j.ecocom.2010.02.005
.
Brahma, B. Nath, A. J. & Das, A. K. (2016).
Managing rubber plantations for advancing climate change mitigation strategy. Current Science, 110, 10.
http://www.10.18520/cs/v110/i10/2015-
Brown, S., Gillespie, A.J. & Lugo, A.E. (1989).
Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35, 881–902.
Brown, S. & Lugo, A. E. (1992).
Aboveground biomass estimates for tropical moist forest of the Brazilian amazon. Interciencia, 17,8-18
Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B.C., Duque, A., Eid, T., Fearnside, P. M, Goodman, R. C., Henry M., Martinez-yrizar, A., Mugasha, W. A., Muller Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-malavassi E., … Ploton, P. (2014).
Improved allometric model to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3 177-3190.
http://doi.org/10.1111/gcb.12629
.
Chukwuemeka, O. (2016).
Wood density of rubber (Hevea Brasiliensis) grown in South-Eastern Nigeria for utilization purposes. International Journal of Advanced Research in Social Engineering and Development Strategies, 4, 40–45.
Djomo Adrien N.; Picard Nicolas, Fayolle Adeline, Henry Matieu, Ngomanda Alfred, Ploton Pierre, McLellan James; Saborowski Joachim; Adamou Ibrahima & Lejeune Philippe (2016).
Tree allometry for estimation of carbon stocks in African tropical forests. Forestry 446–455.
https://10.1093/forestry/cpw025
.
Collins, H.P., Blevins, R.L., Bundy, L.G., Christenson, D. R., Dick, W.A., Huggins, D. R. & Paul, E.A. (1999).
Soil carbon dynamics in corn-based agroecosystems: results from carbon-13 natural abundance. Soil Science Society of America Journal, 63 (3), 584 591.
Daba, D. E. & Soromessa, T. (2018).
The accuracy of species-specifc allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance and Management, 14(18), 1-13.
http://doi.org/10.1186/s13021-019-0134-8
Doetterl,S., Kearsley, E., Bauters, M.,Hufken S, K., Lisingo, J., Baert, G., Verbeeck, H. and Boeckx, P. (2015).
Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications. PLoS ONE, 10 (11), 1-14.
http://10.1371/journal.pone.0143209
.
Ellert, B. H. & Bettany, J. R. (1995)
calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75(4), 529-538.
FAO – Food and Agricultural Organization of the United Nations (2000).
The utilization, processing and demand for rubberwood as a source of wood supply.
http://www.fao.org/docrep/003/y0153e/y0153e00
Feldpausch, T. R., Banin, J., Philips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum-Baffoe, K., Arets, E. J.M. M, Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M.; Fearnside, P. M.; Franca, M. B.; Fyllas, N. M., …& Lloyd, J. (2011).
Height-diameter allometry of tropical trees. Biogeosciences, (8), 1081-1106.
.
Gay F, Brauman A, Chotiphan R, Gohet E, Laclau JP, Lienprayoon S, Mareschal L, Malagoli P, Thoumazeau A, Nouvellon Y, Suvannang N, Thaler, P. & Perron, T. (2021).
Managing soil quality to improve sustainability of rubber plantations, what do we know? In: Pinizzotto et al. (2021).
https://doi.org/10.17528/cifor/008029
Gibbs, H. K. Brown, S. Niles, J. O. & Foley, J. A. (2007).
Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2, 04-023
Glenday, J. (2006).
Carbon storage and emissions offset potential in an East African tropical rainforest. Forest Ecology and Management, 235, 72–83.
Hamdan, Omar, Mohd Hasmadi Ismail & Mohd Hakimi A. Hassan (2013).
Optimal plot size for sampling biomass in natural and logged tropical forests. Conference on Forestry and Forest Products (CFFPR). Volume 1/2013.
http://www.researchgate.net/publication/259457287
.
Hairiah Kurniatum, Sitompul SM, Noordwijk M. V. & Palm Cheryl (2001).
Methods for sampling carbon Stocks above and below ground. International Centre for Research in Agroforestry Southeast Asian Regional Research Programme.pp4
http://www.icraf.cgiar.org/sea
.
Houghton, R. A., Davidson, E. A. & Woodwell, G. M. (1998).
Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles, 12, 25-34
Hossain, M. Saha, K; Siddique, M. R. H. Abdullah, S. M. R., Islam, S. M. Z. Mondol, F. K. Iqbal M. Z.; Akhter, M. & Henry, M. (2021).
Development of allometric biomass models for Hevea brasiliensis Mull. Arg. plantation of Bangladesh: A non-destructive approach. Indian Forester, 147(4): 366-373.
https://10.36808/if/2021/v147i4/152964
.
Husch, B.; Miller, C. I. & Beers, T. W. (2003).
Forest mensuration (third ed.) 402 pp.
http://www.informationbible.com/article-natural-rubber-producing-countries
Ibrahim, M., Isah, A., Shamaki, S. & Audu, M. (2018).
Carbon stock assessment in Majiya Fuelwood Reserve, Sokoto, Nigeria. Journal of Scientific Research and Reports, 18(2), 1-12.
IPCC (2000).
Third Assessment Report: Climate 2001 (TAR). 308 pp.
http://unfccc.int/third-assessment-report-of-the-intergovernmental-panel-on-climate-changeI
IPCC (2006).
IPCC guidelines for national greenhouse gas inventories, Prepared by the national greenhouse gas Inventories.
https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories
IPCC (2007).
Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
http://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf
IPCC (2014).
Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. In R. K. Pachauri, & L. A. Meyer (Eds.), Climate change 2014: Synthesis report.
https://www.ipcc.ch/report/ar5/syr
Janzen, H. H., Campbell, C. A., Gregorich, E. G. & Ellert. B. H. (1998).
Soil arbon dynamics in Canadian agroecosystems. In book: Soil Processes and the Carbon Cycle (pp.57-80)
https://www.10.1201/9780203739273-5
Johns, Christopher (2017).
Measuring Soil Carbon and Soil Carbon Change. Strategic analysis paper, Future Directions International.
https://www.futuredirections.org.au
.
Karthikakuttyamma, M. (1997).
Effect of continous cultivation of rubber (Hevea brasiliensis) on soil properties. PhD Thesis, University of Kerala, Trivandrum,India
http://www.file:///C:/Users/user/Downloads/rubber_journal_article.pdf
Keith, H.; Mackey, B. G. & Lindenmayer, D. B. (2009).
Reevaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28), 11635-11640.
Lal, R. (2004).
Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22.
Liu, X.; Herbert, S. J.; Hashemi, A. M.; Zhang, X. Ding, G. (2006).
Effects of agricultural management on soil organic matter and carbon transformation – a review. Plant Soil Environ., 52, (12): 531–543.
McGrath, D., Smith, C., Gholz, H. & de Assis, O., (2001).
Effects of landuse change on soil nutrient dynamics in Amazonia. Ecosystems 4, 625–645.
Muller, R. N. (1982).
Vegetation pattern in the mixed mesophytic forest of Eastern Kentucky. Ecology 63:1901-1917
Oke, O. S, Akindele, S. O. & Onyekwelu, J. C. (2020).
Biomass and Carbon Stock Assessment of a Tropical Rain Forest Ecosystem in Nigeria. Journal of Forestry Research and Management, 17(2).83-92.
Onyekwelu, Jonathan C.; Mosandl, R. & Stimm, B. (2006).
Productivity, site evaluation and state of nutrition of Gmelina arborea plantations in Oluwa and Omo forest reserves, Nigeria. Forest Ecology and Management, 229, 214–227
Orimoloye, J. R. (2011).
Characterization and Evaluation of Selected Soils of Southern Nigeria for Rubber (Hevea Brasiliensis, Muell. Arg.) Cultivation. A Thesis in the Department of Agronomy, Submitted to the Faculty of Agriculture and Forestry for the degree of Doctor of Philosophy of the University of Ibadan July, 2011.
http://repository.ui.edu.ng/items/56b1030d-765b-42d3-b0e1-c1ecd6a57819
.
Pinizzotto, S., Aziz, A., V., Gitz, Sainte-Beuve, J., Nair, L.E. Gohet, E. Penot & Meybeck, A. (2021).
Natural rubber systems and climate change: Proceedings from the workshop, 23–25 June 2020. Working Paper 9. Bogor, Indonesia: The CGIAR Research Program on Forests, Trees and Agroforestry (FTA).
https://doi.org/10.17528/cifor/008029
Prentice, I. C., Farquhar, G. D., Fasham, M. J.R. Goulden, M. L. Heimann, M. Jarmillo, V.J. Kheshgi, H. S. Le Que’re’, C. Scholes, R. J. & Wallace, D. W. R. (2001).
The carbon cycle and atmospheric carbon dioxide. In: Houghton, J,T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Van der Linden, P.J., Dai, X.; Maskell, K.; Johnson. C.A. (Eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge; pp. 183–237.
https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf
.
Quideau, S.A., Anderson, M. A., Graham, R. C. & Chadwick, O. A. (2000).
Forest Ecology and Management, 138 (1-3): 19-27.
Rajput, B., Bhardwaj, D. & Pala, N. (2017).
Factors influencing biomass and carbon storage potential of different land use systems along an elevational gradient in temperate northwestern Himalaya. Agroforestry System, 91, 479–486.
https://doi.org/10.1007/s10457-016-9948-5
Ravilious, C., Kapos, V., Osti, M., Bertzky, M., Bayliss, J., Dahiru, S. & Dickson, B. (2010).
Carbon, biodiversity and ecosystem services: Exploring co-benefits.21pp
Sethuraj, M. R. (1996)
Impact of Natural Rubber on Environment In: Natural Rubber: An Ecofriendly Material. Rubber Board, Kottayan, pp. 55-59.
http://www.scribd.com/document/368195064/6801
.
Trouve, C., Mariott, A., Schwartz, D. & Guillet, B. (1994).
Soil organic carbon dynamics under Eucalyptus and Pinus planted on savannas in the Congo. Soil Biology and Biochemistry 26: 287–295.
Valbuena, R., Heiskanen, J., Aynekulu, E.,Pitkänen, S. & Packalen, P. (2016).
Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands. (J. Shijo, Ed.) PLoS ONE, 11(7), 1-24.
http://10.1371/journal.pone.0158198
Vashum, K. & Jayakumar, S. (2012).
Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review. Journal of Ecosystem and Ecography, 2(4) 116-123
http://10.4172/2157-7625.1000116
Yang, X., Blagodatsky, S., Liu, F., Beckschäfer, P., Xu, J. & Cadisch, G. (2017).
Rubber tree allometry, biomass partitioning and carbon stocks in mountainous landscapes of sub-tropical China. Forest Ecology and Management, 404, 84-99.
http://www.elsevier.com/locate/foreco
Waizah, Y., Uzu, F. O., Orimoloye, J. R. & Idoko, S. O. (2011).
Effects of rubber effluent, urea and rock phosphate on Soil Properties and Rubber Seedlings in an Acid Sandy Soil. African Journal of Agricultural Research, 6(16), 3733-3739.
Watson, R. T., Zinyowera, M. C. & Moss, R. H. (1996).
Climate change impacts 1995. Impacts, adaptations and mitigation of climate change: scientific-technical analyses.
http://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_sar_wg_II_full_report.pdf
.